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kNN, LVQ, SOM



Objectives

 Instance Based Learning

 K-Nearest Neighbor Algorithm

 (LVQ) Learning Vector Quantization

 (SOM) Self Organizing Maps



Instance based learning

 Approximating real valued or discrete-

valued target functions

 Learning in this algorithm consists of 

storing the presented training data

 When a new query instance is 

encountered, a set of similar related 

instances is retrieved from memory and 

used to classify the new query instance



 Construct only local approximation to the target 

function that applies in the neighborhood of the 

new query instance

 Never construct an approximation designed to 

perform well over the entire instance space

 Instance-based methods can use vector or 

symbolic representation

 Appropriate definition of „neighboring“ instances



 Disadvantage of instance-based methods 

is that the costs of classifying new 

instances can be high

 Nearly all computation takes place at 

classification time rather than learning 

time



K-Nearest Neighbor algorithm

 Most basic instance-based method

 Data are represented in a vector space 

 Supervised learning



Feature space
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 In nearest-neighbor learning the target function 
may be either discrete-valued or real valued

 Learning a discrete valued function

 , V is the finite set  {v1,......,vn}

 For discrete-valued, the k-NN returns the most 
common value among the k training examples 
nearest to xq.

€  

f : ℜd →V



 Training algorithm

 For each training example <x,f(x)> add the example 

to the list

 Classification algorithm

 Given a query instance xq to be classified

• Let x1,..,xk k instances which are nearest to xq

• Where (a,b)=1 if a=b, else (a,b)= 0 (Kronecker function)

€  

ˆ f (xq ) ←
argmax

v ∈ V
δ(v, f (xi

i=1

k

∑ ))



Definition of Voronoi diagram

 the decision surface induced by 1-NN for a typical set 

of training examples.
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 kNN rule leeds to partition of the space into cells (Vornoi 
cells) enclosing the training points labelled as belonging to 
the same class

 The decision boundary in a Vornoi tessellation of the feature 
space resembles the surface of a crystall
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1-Nearest Neighbor

query point qf

nearest neighbor qi



3-Nearest Neighbors

query point qf

3 nearest neighbors

2x,1o



7-Nearest Neighbors

query point qf

7 nearest neighbors

3x,4o



How to determine 

the good value for k?

 Determined experimentally

 Start with k=1 and use a test set to validate 
the error rate of the classifier

 Repeat with k=k+2

 Choose the value of k for which the error rate 
is minimum

 Note: k should be odd number to avoid ties



Continous-valued 

target functions

 kNN approximating continous-valued 

target functions

 Calculate the mean value of the k nearest 

training examples rather than calculate 

their most common value

€  

f : ℜd → ℜ

€  

ˆ f (xq ) ←

f (x i)
i=1

k

∑

k



Distance Weighted 

 Refinement to kNN is to weight the 

contribution of each k neighbor according 

to the distance to the query point xq

 Greater weight to closer neighbors

 For discrete target functions

€  

ˆ f (xq ) ←
argmax

v ∈ V
wiδ(v, f (xi

i=1

k

∑ ))
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Distance Weighted

 For real valued functions
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ˆ f (xq ) ←

wi f (x i)
i=1
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Curse of Dimensionality
 Imagine instances described by 20 features (attributes) but only 

3 are relevant to target function

 Curse of dimensionality: nearest neighbor is easily misled 
when instance space is high-dimensional

 Dominated by large number of irrelevant features

Possible solutions

 Stretch j-th axis by weight zj, where z1,…,zn chosen to minimize 
prediction error (weight different features differently)

 Use cross-validation to automatically choose weights z1,…,zn

 Note setting zj to zero eliminates this dimension alltogether 
(feature subset selection)

 PCA



When to Consider Nearest 

Neighbors

 Instances map to points in Rd

 Less than 20 features (attributes) per instance, 
typically normalized

 Lots of training data

Advantages:

 Training is very fast 

 Learn complex target functions

 Do not loose information

Disadvantages:

 Slow at query time 
 Presorting and indexing training samples into search trees 

reduces time

 Easily fooled by irrelevant features (attributes)



LVQ

(Learning Vector Quantization)

 A nearest neighbor method, because the 

smallest distance of the unknown vector from a 

set of reference vectors is sought

 However not all examples are stored as in kNN, 

but a a fixed number of reference vectors for 

each class v (for discrete function f) {v1,......,vn}

 The value of the reference vectors is optimized 

during learning process



 The supervised learning 

 rewards correct classification

 puished incorrect classification

 0 < (t) < 1 is a monotonically decreasing 

scalar function



LVQ Learning (Supervised)

Initialization of reference vectors m; t=0;

do

{     

chose xi from the dataset

mc nearest reference vector according  to d2

if classified correctly,  the class v of mc is equal to class of v of xi

if classified incorrectly, the class v of mc is different to class of v of xi

t++;

}

until number of iterations t max_iterations

€ 

mc(t +1) = mc(t) +α (t)[xi(t) − mc(t)]

€ 

mc(t +1) = mc(t) −α (t)[xi(t) − mc(t)]



 After learning the space Rd is partitioned 

by a Vornoi tessalation corresponding to 

mi

 The exist extension to the basic LVQ, 

called LVQ2, LVQ3



LVQ Classification

 Given a query instance xq to be classified

 Let xanswer be the reference vector which is 

nearest to xq, determine the corresponding

vanswer



Kohonen Self Organizing Maps

 Unsupervised learning

 Labeling, supervised

 Perform a topologically ordered mapping from 
high dimensional space onto two-dimensional 
space

 The centroids (units) are arranged in a layer 
(two dimensional space), units physically near 
each other in a two-dimensional space respond 
to similar input



 0 < (t) < 1 is a monotonically decreasing 
scalar function

 NE(t) is a neighborhood function is decreasing 
with time t

 The topology of the map is defined by NE(t)

 The dimension of the map is smaller (equal) then the 
dimension of the data space

 Usually the dimension of a map is two

 For tow dimensional map the number of the 
centroids should have a integer valued square 
root 

 a good value to start is around 102 centroids 



Neighborhood on the map



SOM Learning (Unsupervised)

Initialization of center vectors m; t=0;

do

{     

chose xi from the dataset

mc nearest reference vector according  to d2

For all mr near mc on the map

t++;

}

until number of iterations t max_iterations
€ 

mr(t +1) = mr(t) +α (t)[xi(t) − mr(t)] for r ∈ NEC (t)



Supervised labeling

 The network can be labeled in two ways

 (A) For each known class represented by 
a vector the closest centroid is searched 
and labeled accordingly

 (B) For every centroid is is tested to which 
known class represented by a vector it is 
closest



 Example of 

labeling of 

10 classes, 

0,..,9

 10*10 

centroids

 2-dim map
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Animal 

example
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Poverty map of countries
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Ordering process 

of 2 dim data
random 2 dim points
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2-dim map                   1-dim map



 Instance Based Learning

 K-Nearest Neighbor Algorithm

 (LVQ) Learning Vector Quantization

 (SOM) Self Organizing Maps



 Bayes Classification

 Naive Bayes


