
Click to add Text

kNN, LVQ, SOM

Objectives

 Instance Based Learning

 K-Nearest Neighbor Algorithm

 (LVQ) Learning Vector Quantization

 (SOM) Self Organizing Maps

Instance based learning

 Approximating real valued or discrete-

valued target functions

 Learning in this algorithm consists of

storing the presented training data

 When a new query instance is

encountered, a set of similar related

instances is retrieved from memory and

used to classify the new query instance

 Construct only local approximation to the target

function that applies in the neighborhood of the

new query instance

 Never construct an approximation designed to

perform well over the entire instance space

 Instance-based methods can use vector or

symbolic representation

 Appropriate definition of „neighboring“ instances

 Disadvantage of instance-based methods

is that the costs of classifying new

instances can be high

 Nearly all computation takes place at

classification time rather than learning

time

K-Nearest Neighbor algorithm

 Most basic instance-based method

 Data are represented in a vector space

 Supervised learning

Feature space

€

<
r
x (1), f (

r
x (1)) >,<

r
x (2) f (

r
x (2)) >,...,<

r
x (n), f (

r
x (n)) >{ }

€

r
x =

x1

x2

..

..

xd

⎧

⎨

⎪
⎪ ⎪

⎩

⎪
⎪
⎪

∈ ℜd

€

r
x −

r
y = (x i − yi)

2

i=1

d

∑

 In nearest-neighbor learning the target function
may be either discrete-valued or real valued

 Learning a discrete valued function

 , V is the finite set {v1,......,vn}

 For discrete-valued, the k-NN returns the most
common value among the k training examples
nearest to xq.

€

f : ℜd →V

 Training algorithm

 For each training example <x,f(x)> add the example

to the list

 Classification algorithm

 Given a query instance xq to be classified

• Let x1,..,xk k instances which are nearest to xq

• Where (a,b)=1 if a=b, else (a,b)= 0 (Kronecker function)

€

ˆ f (xq) ←
argmax

v ∈ V
δ(v, f (xi

i=1

k

∑))

Definition of Voronoi diagram

 the decision surface induced by 1-NN for a typical set

of training examples.

.

_
+

_ xq

+

_ _
+

_

_

+

.

.
.

. .

Zur Anzeige wird der QuickTim e™
Dekom pressor „TIFF (LZW)“

benöt igt .

 kNN rule leeds to partition of the space into cells (Vornoi
cells) enclosing the training points labelled as belonging to
the same class

 The decision boundary in a Vornoi tessellation of the feature
space resembles the surface of a crystall

Zur Anzeige wird der QuickTim e™
Dekom pressor „TIFF (LZW)“

benöt igt .

1-Nearest Neighbor

query point qf

nearest neighbor qi

3-Nearest Neighbors

query point qf

3 nearest neighbors

2x,1o

7-Nearest Neighbors

query point qf

7 nearest neighbors

3x,4o

How to determine

the good value for k?

 Determined experimentally

 Start with k=1 and use a test set to validate
the error rate of the classifier

 Repeat with k=k+2

 Choose the value of k for which the error rate
is minimum

 Note: k should be odd number to avoid ties

Continous-valued

target functions

 kNN approximating continous-valued

target functions

 Calculate the mean value of the k nearest

training examples rather than calculate

their most common value

€

f : ℜd → ℜ

€

ˆ f (xq) ←

f (x i)
i=1

k

∑

k

Distance Weighted

 Refinement to kNN is to weight the

contribution of each k neighbor according

to the distance to the query point xq

 Greater weight to closer neighbors

 For discrete target functions

€

ˆ f (xq) ←
argmax

v ∈ V
wiδ(v, f (xi

i=1

k

∑))

€

wi =

1

d(xq ,x i)
2

if xq ≠ x i

1 else

⎧

⎨
⎪

⎩ ⎪

Distance Weighted

 For real valued functions

€

ˆ f (xq) ←

wi f (x i)
i=1

k

∑

wi

i=1

k

∑

€

wi =

1

d(xq ,x i)
2

if xq ≠ x i

1 else

⎧

⎨
⎪

⎩ ⎪

Curse of Dimensionality
 Imagine instances described by 20 features (attributes) but only

3 are relevant to target function

 Curse of dimensionality: nearest neighbor is easily misled
when instance space is high-dimensional

 Dominated by large number of irrelevant features

Possible solutions

 Stretch j-th axis by weight zj, where z1,…,zn chosen to minimize
prediction error (weight different features differently)

 Use cross-validation to automatically choose weights z1,…,zn

 Note setting zj to zero eliminates this dimension alltogether
(feature subset selection)

 PCA

When to Consider Nearest

Neighbors

 Instances map to points in Rd

 Less than 20 features (attributes) per instance,
typically normalized

 Lots of training data

Advantages:

 Training is very fast

 Learn complex target functions

 Do not loose information

Disadvantages:

 Slow at query time
 Presorting and indexing training samples into search trees

reduces time

 Easily fooled by irrelevant features (attributes)

LVQ

(Learning Vector Quantization)

 A nearest neighbor method, because the

smallest distance of the unknown vector from a

set of reference vectors is sought

 However not all examples are stored as in kNN,

but a a fixed number of reference vectors for

each class v (for discrete function f) {v1,......,vn}

 The value of the reference vectors is optimized

during learning process

 The supervised learning

 rewards correct classification

 puished incorrect classification

 0 < (t) < 1 is a monotonically decreasing

scalar function

LVQ Learning (Supervised)

Initialization of reference vectors m; t=0;

do

{

chose xi from the dataset

mc nearest reference vector according to d2

if classified correctly, the class v of mc is equal to class of v of xi

if classified incorrectly, the class v of mc is different to class of v of xi

t++;

}

until number of iterations t max_iterations

€

mc(t +1) = mc(t) +α (t)[xi(t) − mc(t)]

€

mc(t +1) = mc(t) −α (t)[xi(t) − mc(t)]

 After learning the space Rd is partitioned

by a Vornoi tessalation corresponding to

mi

 The exist extension to the basic LVQ,

called LVQ2, LVQ3

LVQ Classification

 Given a query instance xq to be classified

 Let xanswer be the reference vector which is

nearest to xq, determine the corresponding

vanswer

Kohonen Self Organizing Maps

 Unsupervised learning

 Labeling, supervised

 Perform a topologically ordered mapping from
high dimensional space onto two-dimensional
space

 The centroids (units) are arranged in a layer
(two dimensional space), units physically near
each other in a two-dimensional space respond
to similar input

 0 < (t) < 1 is a monotonically decreasing
scalar function

 NE(t) is a neighborhood function is decreasing
with time t

 The topology of the map is defined by NE(t)

 The dimension of the map is smaller (equal) then the
dimension of the data space

 Usually the dimension of a map is two

 For tow dimensional map the number of the
centroids should have a integer valued square
root

 a good value to start is around 102 centroids

Neighborhood on the map

SOM Learning (Unsupervised)

Initialization of center vectors m; t=0;

do

{

chose xi from the dataset

mc nearest reference vector according to d2

For all mr near mc on the map

t++;

}

until number of iterations t max_iterations
€

mr(t +1) = mr(t) +α (t)[xi(t) − mr(t)] for r ∈ NEC (t)

Supervised labeling

 The network can be labeled in two ways

 (A) For each known class represented by
a vector the closest centroid is searched
and labeled accordingly

 (B) For every centroid is is tested to which
known class represented by a vector it is
closest

 Example of

labeling of

10 classes,

0,..,9

 10*10

centroids

 2-dim map

Zur Anzeige wird der QuickTim e™
Dekom pressor „TIFF (LZW)“

benöt igt .

Animal

example
Zur Anzeige wird der QuickTim e™

Dekom pressor „TIFF (LZW)“
benöt igt .

Poverty map of countries

Zur Anzeige wird der QuickTim e™
Dekom pressor „TIFF (LZW)“

benöt igt .

Ordering process

of 2 dim data
random 2 dim points

Zur Anzeige wird der QuickTim e™
Dekom pressor „TIFF (LZW)“

benöt igt .

Zur Anzeige wird der QuickTim e™
Dekom pressor „TIFF (LZW)“

benöt igt .

2-dim map 1-dim map

 Instance Based Learning

 K-Nearest Neighbor Algorithm

 (LVQ) Learning Vector Quantization

 (SOM) Self Organizing Maps

 Bayes Classification

 Naive Bayes

